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ABSTRACT

Al-Momani, Ayat Mohammad. Estimation of Abundance Based on Line
Transect Data with and without the Shoulder Condition. Master's Degree Thesis,
Department of Statistics, Yarmouk University, 2011 (Supervisor: Dr. Omar M.
Eidous).

In this thesis, some nonparametric estimators of the population abundance D using
line transect sampling are presented and compared. These estimators are divided into
two categories; the estimators that are developed under the shoulder condition
assumption and the estimators that are developed without assuming the shoulder
condition. For each case, a new estimator is proposed and investigated mathematically
and numerically.

Firstly, we compared between the performances of these estimators for two cases;
when the data are simulated from densities that satisfy the shoulder condition and
from densities that do not satisfy the shoulder condition. The simulation technique is
adopted through the broad range of models to identify the most promising estimator in
the case that the shoulder condition is true and in the case that it does not. A
comparison of these estimators was undertaken in order to determine whether or not
results of different estimators could be combined in analysis of line transect data.
Secondly and based on the simulation results, we proposed different new estimators
that combined between the most promising two estimators when the shoulder
condition is valid and when it is violated. their performances are compared with the
estimator that is called semi-parametric estimator in the literature. The comparison

study among the different estimators shows that the performances of the proposed

estimators are satisfactory as general estimators for both cases.

Keywords: Line transect method; Shoulder condition; Estimation of abundance;
Kernel method; Smoothing parameter; Boundary effect.
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CHAPTER ONE

INTRODUCTION AND LITERATURE REVIEW

1.1 Introduction

Line transect method is a popular and convenient technique used to estimate the
density (abundance) of a biological population D, since it is direct, cost efficient and
can be carried out on foot, or from a variety of land, air, or watercraft. Assume that
the population size is N and the sampled area is A then the population density is
D=N/A.

In line transect method, an area of known boundaries and size is divided into non-
overlapping strips, each with known length (Figure 1.1). Then an observer moves on
the middle of line of the strip and records the perpendicular distances x from the

centerline to a detected object within the strip as iltustrated in Figure 1.2. The total

length of lines /,,/,,.-.,1, is denoted by L.

{rzmgect Enes

suady area
benmdary

Figure 1.1. Diagram represents the line transect method.
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& represents the detected objectand W represents the snissed object

Figurel.2. The perpendicular distance x in line transect method

The fundamental property of line transect sampling method is that not all objects will
be detected, some objects will be missed. Moreover, objects near the transect
centerline have a greater probability to be detected than objects far from the line.
The detection function g(x) represents the proiaability of detecting an object given
that its perpendicular distance isx. The assumptions on g(x) are (Burnham et al.,
1980)

1- g(x) must be monotonically decreasing.

2- Objects directly on the transect line will never be missed (i.e., g(O) =1).

Suppose that the observer detected » objects with perpendicular distances
X,,X,,....,X,. These perpendicular distances form a random sample of size n that
follows a specific pdf f(x) .

Burnham and Anderson (1976) introduced the basic relationship between g(x) and

[ (x) , which is given by
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f(x)=wg(x). 0<x<w (1.1)
[e(x)ax

where w is a truncated distance. They gave the fundamental relationship between

-1
ra (0) = [ I g(x)dx} and the population abundance, D, which can be expressed as
¢

:0%0%
2L

(1.2)
where n  is the number of detected objects, £(n) is the expected value of n ,and L
is the length of the transect lines.

The estimation of D can be accomplished via the estimation of f (0) by (Burnham et
al., 1980)

5_nf0)
2L

(1.3)

where f‘ (0) is the estimator of f (x) evaluated on the transect line (i.e., at x = 0). As
Equation (1.3) demonstrates, the crucial problem in line transect sampling is to
estimate £(0) by f (0). This leads us to obtain the estimation of density D by D.
Moreover, the estimation of D is equivalent to estimate the number of objects N in
a specific known area 4. Therefore, the estimation of N can be accomplished by
using N=4D,

The estimator f” (0) can be obtained by using a parametric approach or a
nonparametric approach. The first one assumed that the form of the probability
density function f(x;8) is known with unknown parameter € (€ may be a vector).
A good statistical method — such as the maximum likelihood method - can be used

now to estimate & and then f(0;0). While the parametric method performs well

om
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when the form of f(x;0) is chosen correctly, its performance is not satisfactory
otherwise (See for example Buckland et. al., 2001). As an alternative method to the
parametric approach, recent works has focused on employing the nonparametric
approach to estimate the parameter f(0) and consequantely the parameter D or N .
A popular method is the kernel method which becomes an important tool in wildlife

sampling (See for example, Chen, 1996, Mack and Quang, 1998 and Eidous, 2005a).

1.2 The Classical Kernel Density Estimation

The form of the classical kernel estimator f{x) of f(x) based on a random sample

X,,X,,.--, X, is given by (Silverman, 1986)

]

fx) ! ZK(x_hX") , —0<X<® (1.4)

rnh o

where & is called a smoothing (or bandwidth) parameter, and X is the kemnel

function assumed to be symmetric and satisfies,

mjK(z)d: =1, wjtK(:)m =0, ?IZK(t)dt =C#0<w (1.5)
Under the assumptions that z-> 0 and nk —> o when n—, the bias and variance
of fl(x) are (Silverman, 1986)

Bias{ 1)) = £ 761 2)

= h2f"(x) n]ﬂK(t)dt +o(n?), (1.6)
and

Var[}(x)J = 'fn(Tx) _11(’ (et + o[-n%) a.7)

m
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We note that f (x) is a consistent estimator of f(x), since Bias—0 and variance—0

when h— 0 and nh-—> oo . The convergence rate of bias is O(hz) and the

convergence rate of variance is O(Lh) . The kemnel estimator (1.4) can be utilized to
n

estimate the parameter f(0) when the data are collected via line transect technique.
However, some corrections are needed before we can use Estimator (1.4) because the
range of perpendicular distance is defined on the positive real line. This issue is
explained in Chapter two. By referring to Estimator (1.4), there are two quantities
under the user control. The first quantity is the kernel function X and the other one is
the smoothing parameter . The using of Estimator (1.4) requires to identify these

two quantities, which are discussed in the following two subsections.
1.2.1 Kernel Functions

There are infinitely many kernel functions that satisfy the condition (1.5). Some of
these functions are given by Silverman (1986). In this subsection we present the name
and the formula of each function as given below.

Epanechnikov kemnel :

3 1, <
K, ()= m(l‘? ] LN
0

, ow

Biweight kernel :

15
KB(t).—.{E(I“IZ)Z’ |t|<1’

0 . ow

0m
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Triangular kernel :

1-]t], |¢]<1

KT(:)={

3
0o, P R%
Gaussian kemnel :

ko)=L expl-/2), o<t <,

2z

Rectangular kernel :

N EIIPS
KR(t)—- 2 )
0, ow

Hodges and Lehman (1956) showed that, for fixed /, the Epanechnikov kernel K, (t)

minimize the mean integral square error (MISE) of f‘k (x) . Table (1.1) below is taken
from Silverman (1986), which gives the efficiency of each kernel function with

respect to Epanechnikov kernel.

Table 1.1. The Efficiency (EFF) for several kernel functions (Silverman, 1986).

Kernel EFF
K, (1) 1
K, () 0.9939
K, (1) 0.9859
K;(t) 0.9512
KL(t) 0.9295

The main message of Table (1.1) is that there is very little loss of efficiency when

adopting the different kernels in the estimator (1.4) and they all contribute very
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similar amount on the basis of MISE . Throughout this thesis, the Guassian kernel

function is always used unless otherwise is stated.

1.2,2 Smoothing Parameter /

The smoothing (or bandwidth) parameter & controls the smoothness of the fitted
density curve. It is well known that the kernel estimator (1.4) is very sensitive to the
choice of . Large h produces a smoother estimator with a large bias and small
variance, while small # gives a rougher estimator with small bias and large variance
(see Wand and Jones, 1995).

There are many different methods in the literature to choose the value of % ; most of
them are developed based on the minimization of the asymptotic mean integral square
error (MISE) or the asymptotic mean square error (MSE) with respect to s. The

formulas of MISE and MSE are given as follows (Silverman, 1986)

MISE(ﬁ(x))= j[Ef(x)— f(x)]zdx + jvar F(x)ax (1.8)
and

MSE(7(x))= [pias( 7 ())f + var(7(x)) (19)

The asymptotic bias and asymptotic variance of f”k (x) are

Bias(f (x))= %hz f'(x)c

and
Var(f(x)) = % f (x)j]‘K 2(¢)at

where C is as defined in (1.5). Therefore equations (1.8) and (1.9) become

m



© Arabic Digital Library - Yarmouk University

MISE(?(x))= %h“c2 ]‘(f"(x))z dx + Zl;z'_TKz (t)dt (1.10)
and
MSE(f’(x))= %h“ (x)e + % f(;\c)j]k2 (¢)at (1.11)

respectively. By differentiate equations (1.10) and (1.11) with respect to # and
equating the resulting equations to zero, we obtain the value of /. The optimal

formulas of % that minimize the asymptotic MISE and MSE are respectively,

Brgse = C_%{ ]‘Kz(t)dt}s{ ?f”(x)dx} ’ n_é (1.12)

and

| —

e =C_§{f(x)_°]f<2(t)df} (@) 5a. (1.13)

The two formulas (1.12) and (1.13) are somewhat disappointing since they show that
the optimal £ itself depends on unknown functions f (x) and f ”(x). However,
formulas (1.12) and (1.13) show an important result: # — 0 and nh = o as n > o,
Practically, formulas (1.12) and (1.13) can be adopted by estimate f (x) and f "(x)

non parametrically and by using the kernel estimator (1.4) and then compute A
iteratively. On the other hand, % can be obtained parametrically by assuming a

reasonable form for f(x). A common choice for f (x) in line transect scheme is the

half normal distribution. This issue is discussed in more details in Chapter (2).

om
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1.3 Literature Review

Hayne (1949) provided the first estimator that has a rigorous justification in statistical

theory. While his method rests on only the use of sighting distances r;, the critical

assumption made can be tested using the sighting angle distances 6, . But this method

is poor if @ is not approximately 32.7°.
After Hayne's estimator, almost no significant theoretical advances appeared until
Gates et al. (1968). They assumed that f (x) has a negative exponential form, i.c.
f(x)=a exp(— ax), where a is an unknown parameter to be estimated. But since the
assumed detection function was very restrictive and might be inappropriate, the
resulting estimator of density could be severely biased. Hemingway (1971) suggested
the half normal model to estimate f(0). This model performs better than the negative
exponential model since it satisfies the usual condition that is known in line transect
sampling as the shoulder condition assumption. Pollock (1978) suggested to use the
exponential power model, which incorporates the negative exponential and the half
normal models as special cases. Hayes and Buckland (1983) proposed the hazard rate
model to fit line transect data. This model was further studied by Buckland (1985),
who also suggested the Hermite polynomial model for grouped line transect data.
Karunamuni and Quinn (1995) developed a Bayesian model for estimating the density
of a closed animal population from data obtained by the line transect method. A
Baysian estimator is constructed with respect to gamma prior density. Most of the
above models used the maximum likelihood method to estimate the corresponding
parameter(s) and they perform well when the model is selected to be appropriate for

the line transect data at hand. Because the above approaches assume that the form of

m
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the probability density function f{x) is known, they are known as parametric

methods.

However, parametric methods are accurate if the model is properly selected, although
they can show poor performance otherwise (Buckland et al., 2001). As an alternative
method to the parametric approach, most works have focused on employing the

nonparametric method to estimate the parameter f(0) and consequantely the

parameter D or N . Popular nonparametric methods are the Fourier series method
(Burnham et al., 1980) and the kernel method (Silverman, 1986). Burnham et al.
(1980) published a major monograph on line transect sampling theory and application.
Their work provided a review of previous methods, gave guidelines for field use, and
identified a small class of estimators that seemed to be useful. Theoretical and
numerical studies led them to recommend the use of estimators based on the Fourier
series (Crain et al. 1978).

In recent years, researchers have turned their attention to nonparametric kernel
method, which becomes an important tool in wildlife sampling. Some initial efforts in
applying the kernel method to line transect data made by Buckland (1992), Chen
(1996) and Mack and Quang (1998). Mack (1998) used the kernel method to perform
a test concerning the validity of the shoulder condition assumption. Mack (2002)
considered some methods of bias correction when the kernel method is used in
constructing confidence intervals for wildlife abundance based on transect data.
Gerard and Schucany (2002) investigated a method for combining estimators from
individual transects when each transect has sufficient data to support estimation with
the kermel method. It is based on a minimization of the asymptotic mean square error
of a linear combination of the individual population density estimator. Eidous (2005b)

proposed some methods to improve the performance of the kernel estimator using line

10
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transect data. As a nonparametric method Eidous (2005a) introduced the histogram

estimator and investigated its performances using line transect data. Another
adaptation of the histogram estimator is suggested and investigated by Eidous (2011).
He developed this estimator under the assumption that the shoulder condition
assumption is not valid. Barabesi (2000) proposed a semi-parametric technique based
on local parametric density estimation. Finally, Eidous and Alshakhatreh (2011)
investigated the properties of a semi-parametric estimator for f(0) that combines
between the kernel estimator and a specific parametric estimator. The parametric
estimator is chosen to be half-normal or negative exponential based on testing the

shoulder condition assumption.

1.4 Thesis Objectives

Let X|,X,,...,X, be a random sample of size n represents the perpendicular
distances follow the probability density function f(x), where f(x) and the
detection function g(x) are related as given in Formula (1.1). The crucial problem in
line transect sampling is to estimate f(0), which leads us to estimate the population

abundance D and the total number of objects N . As such, this thesis aims to present
some existing nonparametric estimators of f(0) for both cases; when the shoulder
condition is assumed to be valid and when it is invalid and to compare between them.
For each case, we aim to propose a new estimator for f(0) and to compare its
performance with those existing estimators aiming to identify the most promising
estimator(s). In addition, we aim to suggest new estimators that combine the best
estimators in each case. These later suggested estimators —as we expected- can be
applied when the shoulder condition is valid and when it is violated because we need

to perform a test to check the validity of the shoulder condition before we decide

11
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which estimator should be used. Finally, we interest to apply and to study the

performances of the different estimators on real data set.

1.5 Thesis Outlines

This thesis is divided into five chapters. Chapter One presents an introduction about
line transect method and classical kernel density estimation.
The rest of this thesis is structured as follows. In Chapter Two, the shoulder condition

is discussed and some known estimators of f(0) together with a new proposed

estimator when the model of the data is assumed to satisfy the shoulder condition are
introduced. Also, their performances are studied and compared via simulation
technique to identify the most promising estimator(s).

Chapter Three deals with some existing estimators that are developed when the data
model does not satisfy the shoulder condition. Another new estimator is proposed in
this chapter and its asymptotic properties are also studied. In addition, the
performances of the different estimators are studied and compared aiming to identify
the best one.

In Chapter Four, we proposed new estimators, each one combines between two
estimators; the best one when the shoulder condition is satisfied, and the best one
when the shoulder condition is not satisfied. A comparison between these new
estimators and the semi-parametric estimator is also performed in this chapter.

Finally, Chapter Five gives numerical example of real data at which the different
estimators of this thesis are applied. Some concluding remarks and comments are also

given.

12
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CHAPTER TWO

SOME ESTIMATORS OF f(0) WITH THE SHOULDER
CONDITION

2.1 Introduction

In this chapter, three well known nonparametric estimators for f(0) that are

developed in the literature uﬁder the assumption that the shoulder condition is valid
are stated. A new proposed estimator is also given under this condition. A comparison
study via simulation technique is performed aiming to study the performances of the
proposed estimator compared with other estimators aiming to identify the best

estimator of them.
2.2 The Shoulder Condition and Classical Kernel Estimator of £(0) .

To estimate the population abundance D, we need to estimate f (O) as equations

(1.2) and (1.3) stated. The perpendicular distances that are obtained by applying line
transect sampling experiment are non-negative, Therefore, some corrections on the

classical kernel estimator (Eq. 1.4) are needed to estimate the parameter f° (0) (ie.
f (x) at the end point of its support ). This issue can be illustrated as follows :
Let X}, X,,...,X, be arandom sample of perpendicular distances from f(x), x> 0.

using directly the classical kernel estimator (1.4) to estimate f (0) we get

710)=- ZK(O_—XJ @.1)

T RS A

13
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The expected value of f*(0) is
. 1 X
E\f"(0))=—EK| —
(f ( )) h (hJ

= ule (u) f (hu)du .

Expanding £ (hu) around zero by using Taylor's series, then we obtain

hu?

2

Elr @)= xte) 10)+ ) 7

= f(O)aj‘K(u}iu + hf’(O)?uK(u)du L. 21; ©) w K(ulu+-- (2.2)

cg_'S

Since IK (u)due =% , then estimator (2.1) is not even a consistent estimator for £(0).
0

To correct this problem (known in the literature as the boundary effect), it is obvious

that we need to divide the estimator f"(0) by IK (u)du =% . Thus, the consistent
0

estimator of £(0) is
X;

) 23
, ) (2.3)

The bias of f,(0) is

L] oo

Bias(ﬁE (0)): 2hf"(0) [uk (u)du + 1* £7(0) j W K(u)du +-- . (2.4)
0 )
The convergence rate of bias is now O(k), slower than the usual rate O(hz) of the

classical kernel estimator as given by (1.6). To obtain O(hz) bias of fk (0), we need

to assume that f'(0)=0 because _[uK(u)du:tO. Since x>0, then we assumed
0

14
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f '( +)= 0. The condition f ’(0“)=0 is known in line transect literature as the

shoulder condition assumption, which means that the probability of detecting an
object in a narrow area around the centerline remains certain.

The variance of estimator (2.3) is {Chen, 1996)

Var(fk (0)): %}(10) mjK(u)z du + o(é) (2.5)

which indicates that the convergence rate for variance of f“k(O) is O(Lh] , the same
n

rate as that of Estimator (1.4).
2.3 Testing the Shoulder Condition

There are two methods in the literature that were proposed to test the shoulder

condition assumption
Hy:feF, vs. H :feF\F, (2.6)
where F,= the class of all pdf that satisfy f '( +)= 0 and F = the class of all pdfs

that are differentiable at 0.
The first method ( parametric method ) was proposed by Zhang (2001). Let

X}, X,,..., X, be a random sample of perpendicular distances with common pdf

f (x) According to Zhang (2001), reject H, for large values of

Zhang constructed a table of critical values for the sampling distribution of Z with

respect to different small sample sizes by using Monte Carlo simulations. Borgoni

15
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and Quatto (2011) gave an approximate formula for the critical values when » is

large.

The second method was proposed by Mack (1998) to perform test (2.6). According
to Mack (1998) derivations, H,, is reject (i.c., the shoulder condition is not satisfied)
if | T|> -Zon , where Zyp represents the 0/2™ quantile of the standard normal

distribution. The test statistics T is defined by

nb?
2/,(0)

T = 1(0) @7

where £'(0) is estimated by

710)= (7, (2b)b—2 2F, (b)] ’

1

~

b= n*,
& is given in section (2.4.1) and F,(u) is the empirical cumulative distribution

function defined by

£ )= Frclon

The p-value for the above test is
p—value = 2pr(Z <-|T l)
=20(-|T]). (2.8)
where ¢ is the standard normal distribution function. The p-value indicates how

strong H, is supported by the data.

16
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14 Estimators of f(0) when £10°)=0

Here we presented three well known estimators for f(0), which developed under the

assumption that f '( * )= 0. In addition, a new estimator is proposed and studied.
24.1 Classical Kernel Estimator

Chen (1996) was the first one who suggested the classical kernel estimator ﬂ(O)
(Eq. 2.3) to estimate £(0). He derived the asymptotic properties of fk (0) under the

assumption that f '( * ) = (. The bias and the variance of fk (0) are given by equation
(2.4) and (2.5), respectively.
The bandwidth parameter % controls the smoothness of the fitted density curve. The

optimal formula of % can be obtained by minimizing the asymptotic mean square

error (AMSE) of £, (0)

AMSE(f,(0))= Bias? (7, (0) J+ Var 7, (0))
=t fr (O{EjuzK(u)du} + %S))TKZ(u)du . (2.9)

Differentiate AMSE (fk (0)) with respect to & and then equating to zero, we get

O |

h= ns. (2.10)

f~(o)2[°ju2K(u)du]2

If the kernel function K is assumed to be Gaussian kernel (see subsection, 1.2.1) and

f(x) is half normal distribution with scale parameter o’ then we get

17
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h=09330n™""°, where o can be replaced by & = Ifo/n is the maximum
i=1

likelihood estimator of o under half-normal distribution. It is worthwhile to mention
here that there are many methods to select the smoothing parameter /. Most of them
are complicated in their computations. Gerard and Schucany (1999) compared
between some of these methods and reported that the selection of £ by assuming the

half-normal distribution is very acceptable for line transect sampling technique.
2.4.2 Barabesi Estimator

Barabesi (2001) proposed a new estimator for f (0) by using line transect method
based on local parametric estimation technique. In this technique he assumed

m(x,H,y)z@(x, y) is a family of key model, where g(x,y) is a monotone
decreasing density function satisfies g’(O, }/) = 0. The formula of the local parametric
estimator for f° (0) is given by

/:(0)=8,2(0,7),
where é,, is the estimator of &#. Hjort and jones (1996) showed that & can be

estimated by solving the following local equation

%Z;:Kh(xi)"(xiﬂ)— [ K W, 0)mle,0.7)d60 =0, @.11)

where K, (1)= %K[

%), K(u) is a kemel function and wu,0) is a weight function
Barabesi assumed in his estimator that v(x,8)=1 and the vector of parameters y is

initially estimated by 7 which based on a likelihood estimator.

under the assumption nh — o and & — 0 as n — oo the bias and variance are given

by
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Bias(f,, (0)): ba, 7'+ hla,

. %, (£"(0)-£7(0,6,))+ofn*) (2.12)

and

var(7,(0))= SOp, O(L] 2.13)

nha’ nh
where q, = fu’K(u)a’u and b= fK(u)zdu.

By substitute m(x,B, y) in equation (2.11) and solve it to get éh, Barabesi get the

local parametric estimator for £(0), which is

£0)=6,5(0,7)

__ (007} 2.14)
[ .05l 7)ar

Barabesi takes the simple case when g(x,) is a half normal and the kernel function

to be the Gaussian. So, his estimator (2.14) becomes

n - h? %
f3(0)=£,(0) 74 (2.15)
>
where £;(0) is given by (2.3) and 7* ==L | The estimator (2.15) is simply the
n

1
2

2
usual classical kernel estimator (2.3) corrected by a factor [—h—z+1} , which

4

converges to oneas 4 — 0.
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2.4.3 Histogram Estimator

Eidous (2005b) introduced a nonparametric frequency histogram method using line

transect data. His estimator is given by
1 n
- Eg"[o. §(X0), (2.16)

where # is called the bin-width of the histogram estimator, and 7,(¢) is an indicator
function of a real set B.

The bias of (0) is

Bias(7,(0))= S0+ 2f"(0)+o(h2).

The bias convergence rate of £, +(0) is O(n) if f '( *);t 0, while it is O(hz) when

f '( * ) = (. The variance of estimator (2.16) is

wlii0)-20-(3)

which indicates that the convergence rate for variance of f,(0) is O(LJ , the same
nh

rate as the classical kernel estimator. The AMSE of f, ~(0) is,

AMSE(fE (0)): % £(0)+ %.

The value of % that minimizing the AMSE is given by

h= (9£(8)))) E (2.17)

Assume that the underlying probability density function f° (x) is half normal with

1
scale parameter ¢’ then from (2.17) we find £ =1.6246 n 5, where & is the

maximum likelihood estimator for o (see Subsection 2.4.1).
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2.4.4 The Proposed Estimator when f '( ¥ )= 0

Let X|,X,, ... ,X, be a random sample of perpendicular distances of size » Under

the assumption that f '(0+ ) = 0, we propose the following estimator for £(0),

A 2 4 n X:‘
Ju(0)= EZZQ—K (J—h] : (2.18)

=t il

where 7, = 47/50, r, =127/200, r, =-91/150 and r, = 61/400.

4
Let D, =) jr, then D =1, D,=046, D;=-0.6. Also let
j=1

o

@ 4 3 4
T(#yyen?y) = IKz(u)duz Jr} 422> rn K@l pK@u/Ddu and K} is the
0 =1 0

J=14=j+1

density of N(0,1), then T (r,,..., r,) = 0.1847 . The optimal value of & can be

1

obtained by minimizi-ng'the AMSE of f (0}, which gives #=1.2060 n 5 when
f(x) is assumed to be half normal with scale parameter o . The illustrations for the

use of the above notations are given in Section (3.4). The asymptotic properties of

Estimator (2.18) are stated in the following lemma.

Lemma (2.1). Suppose that f{x) is defined on [0, ) and has a continuous second
derivative at x = 0. Under the assumption that # — 0 and nh — = as n-» w0, the

expected value and the variance of f; (0) are,

ao

Elf,, (0)) = f(0)D, + 21" (O)D, mqu(u)du +h’ f1(0)D, ju‘*K(u)du +o(h?)

0 o

= 1(0)- 064 £7(0) [u? K (u i 2.19)
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and
var(fpl (0)): %T(q ety ) FO( R,

. 0.73881(0)

2.20
T (2.20)

Note that, because I}, = 1 then f » (0) is asymptotically (A — 0 as n — o) unbiased
estimator for f(0) and since f ’(0+ )= 0 then the convergence rate for bias of f 1 (0)

is O(h?). Also note that the variance of fpl (0) converges to zero as nh — o« when

n —» 0. More details and illustrations about the results of this section are given in sections

(3.4) and (3.5) of Chapter (3) at which the proof of Lemma (2.1) is stated.

2.5 Simulation Design

To compare among the performances of the different estimators, a simulation study

was performed. The data are simulated from densities that satisfy f '(0+ )= 0 (e.g. half
normal} and from densities that do not satisfy f '( * )-—- 0 (e.g. negative exponential).

The later case is considered to investigate the performances of the four estimators,

A (0), f’B ©), /. (0) and Fon (0) when the shoulder condition is vielated, while their

mathematical derivations assume the validity of this condition. The smoothing

parameter i for the different estimators is computed by using the formula
21 - - -
h=A6 n 5, where A=0.933 for £,(0) and f£,(0); 4=1.624 for f,(0); and

A =1.206 for the proposed estimator f, Pl (0) .
All the results are based on simulated 1000 samples of sizes » =50, 100, 200. The

data generated from three different families of models which are commonly used in
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line transect studies (see Barabesi. 2001 and Eidous, 2009). The first model is the

exponential power (EP) family (Pollock,1978)

f(x)=—l——Jexp(—xﬂ), x>0, =1, (2.21)

with detection function g(x): exp(— x? ) The hazard rate (HR) family (Hayes and

Buckland,1983)

f(x)=+ , B>1, (2.22)
if x=0

with detection function g(x)=(1——exp(—x"B )), and the beta (BE) model

{(Eberhardt,1968)

fx)=01+p)1-x),0<x<1 520, (2.23)

with detection function g(x)=(1-x)’. In our simulation design, these three families

were truncated at some distance w.

Four models were selected from EP family with parameter values

B£=10,15 20,25 and corresponding truncation points given by
w=5.0, 3.0, 2.5, 2.0. (see Figure 2.1). Four models were selected from HR family
with parameter values B =1.5, 2.0, 2.5, 3.0 and corresponding truncation points

given by w=20, 12, 8, 6. (see Figure 2.2). Moreover, four models were selected
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from BE model with parameter values £ =15, 2.0, 2.5, 3.0 and w=1 for all cases.

(see Figure 2.3). The considered models cover a wide range of perpendicular distance
probability density functions which vary near zero from spike to flat. The shoulder
condition do not satisfy for BE model with different values of B and for EP model
with #=1. Also, despite the shoulder condition is satisfied for HR model, this model
decreases sharply away from the original point (i.c. x=0) when £=1.5 and 2.0.
This case may be occur in practice when the visibility away from the transect line is
not distinct due to ~may be- fog, tall grass.. .etc.

To simulate the data from the above three families, the acceptance-rejection technique
is adopted (See for example, Burnham et. al., 1980 and Ross, 1990).

For each consider estimator and for each sample size, the relative bias

s - EF0)-7(0)

O
and the relative mean error

RUE - JMSE] ;7"(0)),
o)

arc computed. The results are presented in Table (2.1). For more simplicity of

comparison, we present the efficiency (EFF) of the different estimators with respect to

classical kernel estimator in Table (2.2),

MSE\f, (0)

EFF = Laneol
MSE(£(0)
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where £(0) in the above formula stands for f£,(0) , f;(0) or f5(0). The symbols
EFF1, EFF2 and EFF3 in Table (2.2) represent the efficiencies of f; (0), fe (0) and

f ” (0) with respect to ]‘i (0) respectively.

2.6 Comparison and Results

Several conclusions can be drawn based on the simulation results. Based on Table
(2.1) it is clear that the RME s of the different estimators decrease as the sample size
n increases. This coincides with the asymptotic properties of the different estimators,
which assumes that nh — o and 4 — 0 when n — . This indicates that the biases

and the variances of the different estimators tend to zero as the sample size tends to be

large. Tables (2.1) and (2.2) show that the two estimators ka (0) and f & (0) perform

similar to each other with some preferences for f,(0) over f£,(0). This result is also
obtained by Eidous (2005¢) who suggested some ways to correct the bias of estimator
f(0). These two cstimators perform well when the shoulder condition of the
simulated model is large (e.g. EP with g =2.0, 2.5 and HR with #=2.5, 3.0) but

not decreasing rapidly away x=0. However, the simulation results are generally
demonstrate the two estimators 7, (0) and Fom (0) to be more promising.

The results of Table (2.1) indicate that Barabesi estimator f,(0) and the proposed
estimator f,,(0) have smaller |RB|s than the classical kernel estimator £, (0) and the
histogram estimator f,(0) for most considered cases.

Tables (2.1) and (2.2) show that the performances of f5(0) and f,,(0) are similar —

in some sense - to each other with priority for f,, (0) over f£,(0) when the shoulder

25

om



© Arabic Digital Library - Yarmouk University

condition is not true (e.g. EP model with § =1.0 and BE model with different values
of ) and when the shoulder condition is moderate (e.g. EP model with f=1.5).
Moreover, the performance of 17 l (O) is better than that of £, B (0) for HR model with

£ =1.5, 2.0. These two cases indicate that the shoulder condition is large but it

decreases rapidly away from x = 0. The biases of the different estimators were large

for these two cases compared to the biases of the other cases. Regarding the values of
the EFFs in Table (2.2), it is clear that the performances of f, (0) and f’m(O) are

better than f,(0) and £, (0) in most cases that are considered. Based on these results,

we may recommend and consider the two estimators f,(0) and f . (0) as the most
promising estimators. Therefore, we will consider them again in Chapter {4) to form

and to study new proposed estimators.
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Figure 2.1. Represent the detection function g(x) of the Exponential power (EP)

model for #=1.0, 1.5, 2.0 and 2.5

27

.om



© Arabic Digital Library - Yarmouk University

B=15

1
0.8 |
0.6 | 57
0.4t f=25 p=3
0.2}
1 2 3 4

Figure 2.2. Represent the detection function g(x) of the Hazard-rate (HR) model

for #=1.5, 2.0, 2.5 and 3.0
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0.2 0.4 0.6 0.8 1

Figure 2.3. Rcpresent the detection function g(x) of the Beta (BE) model for

£=15, 20, 2.5 and 3.0
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Table 2.1. The Relative Bias (RB) and the Relative Mean Error (RME) for £, (0),

£5(0), f£(0) and 7, (0)
1:(0) /5(0) 7:(0) Jr(0)
Blw |n RB |RME| RB |RME| RB | RME | RB |RME
Exponential
power model

50 | -0.323 | 0.338 | -0.264 | 0.284 | -0.358 | 0.370 | -0.309 | 0.325
1.0| 5.0 | 100 |-0.290 ] 0.299 | -0.242 | 0.255 | -0.322 | 0.330 | -0.270 | 0.280
200 | -0.262 | 0.269 | -0.225 | 0.233 | -0.289 | 0.295 | -0.234 | 0.241
50 | -0.147 | 0.193 | -0.072 | 0.154 | -0.161 | 0.203 [ -0.099 | 0.157
1.5] 3.0 [ 100 ] -0.130 | 0.160 | -0.072 | 0.123 | -0.144 | 0.172 | -0.072 | 0.113
200 -0.109 [ 0.132 | -0.063 { 0.101 | -0.119 | 0.140 | -0.048 | 0.086
50 |-0.076 | 0.154 | 0.005 | 0.146 | -0.085 | 0.155 | -0.004 | 0.126
20| 2.5 | 100 | -0.060 | 0.119 | 0.003 | 0.109 | -0.063 | 0.118 | 0.013 | 0.097
200 | -0.049 | 0.094 | 0.001 | 0.085 | -0.050 { 0.095 | 0.036 | 0.084
50 | -0.036 | 0.151 | 0.049 | 0.167 | 0.037 | 0.154 | 0.037 {0.134
25| 2.0 {100]-0.032 | 0.117 | 0.033 | 0.125| -0.030 | 0.115 | 0.055 | 0.116
200 ] -0.025 | 0.088 | 0.024 | 0.092 | -0.022 | 0.087 | 0.074 | 0.105

Hazard rate
model

50 |-0.363 | 0.382 | -0.308 | 0.333 | -0.445 | 0.459 | -0.406 | 0.421
1.5120.0 | 100 | -0.329 | 0.339 | -0.284 | 0.297 | -0.410 | 0.417 | -0.355 | 0.365
200 | -0.275 | 0.283 | -0.238 | 0.249 | -0.353 | 0.359 | -0.296 | 0.303
50 | -0.225 | 0.257 | -0.157 | 0.208 | -0.280 | 0.308 | -0.228 | 0.264
2.0|12.0[100|-0.179 [ 0.202 | -0.124 | 0.159 | -0.225 | 0.246 | -0.181 | 0.205
200 | -0.135 1 0.150 | -0.091 | 0.114 ] -0.167 | 0.181 | -0.130 | 0.147
50 [ -0.102 | 0.159 | -0.023 | 0.134 | -0.108 | 0.170 | -0.074 | 0.147
2.5} 8.0 | 100 [-0.067 | 0.113 | -0.005 | 0.097 | -0.066 { 0.114 | -0.031 | 0.100
200 | -0.040 | 0.077 | 0.009 | 0.072 | -0.028 | 0.075 | 0.016 | 0.067
50 |-0.046 | 0.129 | 0.037 | 0.137 | -0.032 | 0.124 | 0.012 | 0.128
3.0| 6.0 | 100 -0.023 | 0.094 { 0.042 | 0.106 | -0.005 | 0.090 | 0.044 | 0.100
200 | -0.007 | 0.076 | 0.043 | 0.091 | -0.006 | 0.074 | 0.078 | 0.106

Beta model

50 | -0.166 | 0.207 | -0.093 | 0.164 | -0.182 | 0.218 | -0.126 | 0.175
1.5 1.0 {100 | -0.149 | 0.178 | -0.092 | 0.138 | -0.164 | 0.190 | -0.095 [ 0.135
200 | -0.127 | 0.148 | -0.083 | 0.115 | -0.139 | 0.157 | -0.061 | 0.092
50 | -0.186 { 0.222 | -0.115 | 0.175 | -0.207 | 0.238 | -0.151 | 0.184
20} 1.0 [100]-0.172 1 0.196 | -0.117 | 0.154 | -0.187 | 0.208 | -0.123 | 0.150
200 -0.153 1 0.168 | -0.110 | 0.131 | -0.167 | 0.180 | -0.095 | 0.116
50 1-0.21310.243 [ -0.144 | 0.192 | -0.232 | 0.257 | -0.174 | 0.205
25| 1.0 {100 |-0.190 | 0.209 | -0.135 | 0.165 | -0.208 | 0.225 | -0.145 | 0.167
200 | -0.176 | 0.189 | -0.133 { 0.152 | -0.190 | 0.202 | -0.112 | 0.130
50 }-0.223 | 0.249 ] -0.155 | 0.197 | -0.243 | 0.266 | -0.192 | 0.218
3.0{ 1.0 [ 100 |-0.200 | 0.219 | -0.146 [ 0.175 | -0.218 | 0.235 | -0.162 | 0.182
200]-0.180 { 0.192 | -0.138 { 0.154 | -0.198 | 0.208 | -0.129 | 0.143
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Table 2.2. The Efficiency (EFF) for £,(0), f,(0) and 7;,(0)

g |w IE EFF1 EFF2 EFF3
Exponential power model
50 1.190 0.909 2.082
1.0 5.0 100 1.169 0.917 2.456
200 1.154 0.907 2.471
50 1.242 0.951 0.677
1.5 3.0 100 1.300 0.948 0.567
200 1.328 0.942 0.479
50 1.061 0.991 0.419
2.0 25 100 1.080 0.986 0.346
200 1.101 0.999 0.263
50 0.904 1.014 0.371
2.5 2 100 0.933 1.014 0.297
200 0.930 1.010 0.215
Hazard rate model
50 1.142 0.837 0.937
1.5 20.0 100 1.140 0.815 0.930
200 1.140 0.790 0.926
50 1.236 0.833 0.950
2.0 12.0 100 1.277 0.822 0.971
200 1.309 0.820 1.029
50 1.132 0.942 1.060
25 8.0 100 1.140 0.968 1.142
200 1.045 1.074 1.110
50 0.908 0.990 1.036
3.0 6.0 100 0.873 1.064 0.957
200 0.829 1.058 0.723
Beta model
50 1.283 0.929 1.256
1.5 1.0 100 1.270 0.951 1.361
200 1.287 0.934 1.583
50 1.276 0.942 1.218
2.0 1.0 100 1.277 0.931 1.312
200 1.274 0.916 1.448
50 1.267 0.918 1.178
2.5 1.0 100 1.275 (0.931 1.253
200 1.249 0.923 1.371
50 1.255 0.929 1.155
3.0 1.0 100 1.253 0.929 1.218
200 1.236 0.925 1.318
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CHAPTER THREE

SOME ESTIMATORS OF {(0) WITHOUT THE
SHOULDER CONDITION

3.1 Introduction

This chapter covers some existing nonparametric estimators for f{0) when the
shoulder condition is not valid (ie. f'(0*)=0). A new estimator for f(0) when
f'(0")=0 is proposed. The asymptotic statistical properties of the proposed
estimator are derived. A numerical comparison study among the different estimators

based on simulation technique is conducted aiming to identify the most significant

one.
3.2 Mack Estimator

Mack et al. (1999) introduced the boundary kernel estimator for f (0) under the

assumption that the shoulder condition is not satisfied (i.e. f'(0*)=0). Their

estimator is given by

J"ME(O)=$Z"I:K‘[);"], G.1)

where h is the bandwidth (or the smoothing) parameter of the estimator and K* is a

kernel function satisfying

IK'(u)du:l . IuK'(u)du:O and J‘uzK'(u)a'u-—:a'#O.
0 0 ]
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~e» wiat the assumption about K~ is a little different from those about K. Here all

integrals are defined on (0,0). The bias of f,,.(0) is,

Bias(7, 0)= "L O ke s ofs?),
0
which is of order O(h2 ) without assuming that f '( ¥ )= 0. the variance of f, (0) is

Var(fME(O)) n( SO)] J’ (u)du+o( )

Under the assumption that # — 0 and #A — 0 when n — o, the convergence rate for

bias and variance of Estimator (3.1) are O(hz) and O[L) respectively. Which are
nh

the same rate as the classical kernel estimator ) (O)

The asymptotic mean square error (AMSE) of (3.1) is

AMSE(?ME(O))=% (0 { [k (u)duJ L S0) IK.z ()du, (3.2)

and the value of the bandwidth 4 that minimize (3.2) is

5

f(O)?K'z(u)du .

h= n?’.

(0)2[ furkc (u)duJ

The boundary kernel function that minimize the AMSE of f' ME (0) is (Mack et al,,
1999)

K ()= 6(1 —3u + 20 [ (1), (3.3)
where 7, (t) is an indicator function of a real set B. Mack et. al. (1999) assumed that

the underlying probability density function f (x) is to be negative exponential with
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scale parameter @, then by taking the kernel function as given in (3.3), we found that

1
h=343750n %, O can be replaced by its MLE 6 = X.
3.3 Eidous Estimator

Eidous (2011) proposed a new estimator for f (0) without requiring the assumption

f '(0”)= 0. He named his estimator "additive histogram estimator”. The additive

histogram estimator is given by

fpg(0)=;1zzlik,-f,-()f.-)- (3.4)
107 —-59

where the constant k,'s are k, =——, k, =04, k; = , ky =ﬂ-, h is the bin
60 120

60

width, and 7,(x) is the indicator function defined by

1, O<x<jh
zj(x)={ |

0, ow
Under the assumption that 4 — 0 and nh —» © as n — « and without assuming that
f '(0" )= 0, the bias and variance of f,(0) are
Bias(,;(0))= 0.05h2 £"(0)+ o{h?)

and

var(7,e0))= 2225 1(0)+ O(L) .

rnh

The AMSE of f;,(0) under the same assumption is

AMSEU’PE (0)): 2'96: 61 £(0)+0.0025%* £"*(0). (3.5)
n

The value of /. that minimize (3.5) is given by
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1) J :
h=3.12151 ns. 3.6
[f”(o) GO

By assuming that f (x) is a negative exponential with scale parameter & then

1

Formula (3.6) becomes 4 =3.1215 @ n *, where 6= X .
3.4 The Proposed Estimator when f'(0*) =0

Given that the shoulder condition is not true (i.e. f'(0*) # 0) then we propose to use

the following estimator for f(0),

4

R 2 &Y X,
fpz(O)—%er,-K(jh), (3.7

j=1 i=1

4
where  =43/30, ,=7/10, r, =-31/30 and r, =19/60. Now if D, =) j’r,,
f=1

then D, =1, D,=0 and D, =-0.6. Also T(r,..,r,)=02742 (see

Subsection 2.4.4) when the kernel function K is chosen to be Gaussian function (i.e.

2

1 e 2 then

2z

the density of N(0,1)). Assume that f(x) = ée'*”’, x>0 and K(2)

1
the optimal formula estimate of the smoothing parameter & is 5 =1.2480 n 3, where

6=X.

Lemma (3.1). Suppose that f(x) is defined on [0, co) and has a continuous second
positive derivative at x=0. Under the assumption that # -0 and nh —> o as

n — o, the expected value and variance of f" ", (0) are,
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Elf,, (0)) = £(0)-0.6 4 f’(O)“]uzK(u)du +o(h?), (3.8)

and

vaa()- 2D [ 1), (39)

Proof of Lemma (2.1) and Lemma (3.1).

Let f 7 {(0), i=1,2 be the proposed estimators, where f 1 (0) is the Estimator (2.18)

and f {0} be the Estimator (3.7). The expected value of K(X/ jh) is
EK(X 1 jhy= [K(x/ jh)f (x)dx
0

= jh [K@)(f(0) + jhuf'(0) + (jhu)* £7(0) 12+ (jhu) £7(0)/6+ -
(]
= JHF(©)/ 2+ (jh) £'(O)R, + GB)® £ (O, /2+(jh)* £ (O)R; /6 +--

w

where R, = Iu’K (t)du . Therefore, the expected value of f, 7(0),i=121s
0

E(fn(@) =7 37, EK (X jB)

=%i*}- L0/ 2+ R £(OR, + (Y £ O)R, 12+ (G fT(O)R, 16+

= f(0)D, +2kf"(O)R D, + h* f"(0)R, D, + o(h*).
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Now, for estimator f,(0) we indicated that D, =1, D, =0.46 , D, =-0.6 and we

assumed that f '(O" ) = 0. This yields,
E{/(0))= 70~ 0.6 5 f(O)R, +o(A?)..

Also, for estimator f}z (0) we obtained D, =1, D, =0 ,D,=-0.6 and without

assuming that f '(0+ ) =0, we obtain,

E{7,,(0))= £(©) ~0.6 B £"(OR, +0(h?):

Note that the convergence rate for bias of two estimators is O(h2 )

We turn to the variance of f"Pi(O), i=1,2. Suppose that # >0 and nh > as

n —> o then the variance of f; 7 (0) is

Var(f» (0)) = % var[i rK(X/ jh)]

A J=1

4 2 4 2
=%[E[erK(X/ jh)} -[erEK(Xf jh)} J (3.10)
n

By substituting the expression of EK(X/ jk) in the second term of (3.10), then we

obtain

R j=1

Var(f,,(0) =%E[ir,-f<(xuh)] o)

= _%EEl:iirj'}K(X/jh)K(X/lh)} +o(n'h7)
n -

J=1 =1
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h2 l:Zr K*(X/ ﬂz)+2Zr nK(X/ ;h)K(X/lh)Jw(n"h")

[Zr"‘E(K (x/ Jh))+2z Zr rE(K(X/ Jh)K(X/lh))]+o(n"h“) (3.11)

J=ti=j+l

Now,

E( (01 j0)= K (et i) f (o)
= jh [K2@){ £ (©0) + jhuf Q)+ (jhu)* £7(0)/ 2+ .. du
0

= jkf(O)TKz(u)du +o(h). (3.12)
Also,

E(K(X/ jn)K(X /Ih)) = c]'K(x/ K (x1Ih) f(x)dx
0

= h?K(u 1 DK @I D{£0) + huf"(0)+ (hu)? £7(0)/ 2+ ..)du
0

- hf(O)]’K(u ! DK (! Ddu + o(h). (3.13)

Substituting (3.12) and (3.13) into (3.11), we obtain

Var(fp,.(o))= 42{120)[.[1{ (u)dqur +2Z er,jx( ] ( Jdu]w(n ')

j=li=j+1
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Now, for the estimator _fﬂ (0) (Eq. 2.18), T'(r,...,r,) = 0.1847 . This gives,

- 0.7388 (0 1
Var(fm (0)): —'—"'*';i-l—fQ + O(E) .

Also, for the estimator £ »(0) (Eq.3.7), T(n,,...,r,) = 0.2742 . Therefore,

Var(_/“:‘],,2 (0)) = %if(o) +o(n”'h7h).
n

This completes the proof. Note that the convergence rate for variances of f »(0) and

72 (0) is 0[ lh].

nh
3.5 Asymptotic Mean Square Error and Smoothing Parameter h

The optimal smoothing parameter 4 for the proposed estimators £, 1 (0) and f 2 (0)

can be computed by minimizing the asymptotic mean square error of each estimator

with respect to k. The form of the asymptotic mean square error of both estimators

Fol0), i=1,2 is

AMSE(},,(0))= 0.36h“(f"’4(o)ﬁu2K(u)a'u]2 e (""'n‘;:‘ )0 (3.14)

By differentiate equation (3.14) with respect to & and equating the resulting equation

to zero, we get the formula of £, which is given by
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- 41(r,,...,r,)f0) 5 3.15)

L)

1.44 f""(o{ J.uzK(u)duT

0

<«

. . . 1
Assume that the kernel function is Gaussian function, then Iu2K (u)du=-2-.
0

Therefore, the smoothing parameter of f“ »(0) 1s

h=1.1546( 7(0) ]En_%,

and if f(x) is taken to be half normal with the form f(x)=2exp(-x*/26%)/ 027 ,

then f(0)=2/c+2x and f"(0)=-2v2/0* vz . Therefore,

1

h=12066n 3.

For estimator f,,(0), the smoothing parameter is

1

h=1.2479 [ff %Jg 3

Note that T'(#,...,#,) = 0.2742 for estimator f‘ ,(0). If f(x) is taken to be negative
exponential with the form f(x) = exp(-x/6)/8, then f(0}=1/6 and f"(0)=1/6°.

This gives,

1
h=12480n 5.
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3.6 Simulation study and Results

A simulation study is performed to investigate the performances of the different

estimators of this chapter and to compare among them. Three estimators for f{0) are

considered, f,,;(0) (Eq. 3.1), f»;(0) (Eq.3.4) and f,,(0) (Eq. 3.7). The smoothing

1
parameter / for the three estimators takes the form =B & n 5, where B =3.438 for

estimator fME(O); B=3.122 for estimator f,;(0); and B=1.248 for estimator
f,,z(()). Note that the kernel function (3.3) is used for Mack's estimator f’ME 0),

while the Gaussian kernel is used for the proposed estimator f” (0.

The data are simulated from the 12 models that given in Section (2.5) with the same

values of n, f and w. The RBs and RMEs for each estimator are given in Table

(3.1) and the EFFs of each estimator with respect to the classical kemel estimator,

ﬂ(O) (Eq. 2.3) are demonstrated in Table (3.2). Note that EFF1, EFF2 and EFF3

represent the efficiencies of f,,(0), fn:(0) and f,,(0) with respect to f,(0)
respectively.

The results of Table (3.1) show that the bias of £,,(0) is small in most considered
cases compared to that of f #:(0) and f 7, (0). However, the corresponding RME of
fuz(0) is larger than that of £,.(0) and f,,(0). This indicates that the estimator
Fo (0) is more volatile than f,,(0) and £, 2 (0) . In other words, the performances of
f »(0) and f" 2 (0) are more stable than that of f'ME (0) The comparison among the

cfficiencies of the three estimators in Table (3.2) leads us to discard f,,.(0) as a

competitor estimator even for the models that do not satisfy the shoulder condition

assumption. The performances of the other two estimators seem to be more
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promising. The two estimators perform well for models that do not satisfy the
shoulder condition (e.g. EP model with £ =1 and BE with different values of f) and
for the HR model with § =1.5. As we pointed out in Chapter 2, despite that the HR
model with f=1.5 has a shoulder at the origin, it decreases sharply away from the
origin when £ =1.5. This model (HR model with £ =1.5) shares most models that
do not have the shoulder condition with this property. However, the performances of
f #:{0) and f“ 7 {0) are not acceptable for the other models that satisfy the shoulder
condition (e.g. EP model with £ =2, 2.5 and HR model with £ =2.5, 3). But here
we need to remember that the asymptotic properties of these two estimators are

derived under the assumption that f'(0*) # 0. Generally speaking, the two estimators

f” »z(0) and f“ # (0) perform well when the shoulder condition of the data is not true

and they are recommended for line transect sampling if the data seem to be spike at
the origin. The shoulder or the spike at the origin can be checked by using the

traditional histogram method and by taking 4 to 10 intervals (see Buckland at, al.
2001). Finally and because of their good performances, the two estimators f 2 (0)

and f" 2 () will be used to build new proposed estimators. Then will be discussed in

the next chapter,
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Table 3.1. The Relative Bias (RB) and the Relative Mean Error (RME) for fME (0),
J7:(0) and £,,(0)

Sz (0) 72:(0) fr(0)

B [w |n | RB |RME| RB | RME | RB | RME

Exponential power model

50 -0.070 | 0.208 | -0.204 | 0.236 | -0.116 | 0.189

1.0 5.0 100 -0.045 | 0.160 | -0.163 | 0.188 | -0.100 | 0.150

200 -0.040 | 0.125 | -0.130 | 0.149 | -0.085 | 0.121]

50 0.046 | 0252 | 0.062 | 0.160 | 0.057 | 0.181

1.5 3.0 100 0.027 | 0.187 | 0.084 | 0.137 | 0074 | 0.155

200 0.027 [ 0.151 | 0100 | 0.131 | 0.057 | 0.116

50 0.064 [ 0.283 | 0.200 | 0.246 | 0.124 | 0.218

2.0 2.5 100 0.049 | 0.208 | 0.207 | 0.233 | 0.117 | 0.182

200 0.029 | 0.159 | 0.204 | 0.222 | 0.099 | 0.145

50 0.063 | 0.294 | 0.298 | 0.335 | 0.150 | 0.239

2.5 2.0 100 0.038 | 0.224 | 0.286 | 0.309 | 0.123 | 0.187

200 0.024 | 0.169 | 0.253 | 0.268 | 0.098 | 0.149

Hazard rate model

50 0.157 | 0.279 | -0.275 | 0.318 | -0.053 | 0.206

1.5 20.0 100 0.183 | 0.246 | -0.228 | 0.256 | -0.012 | 0.134

200 0.223 | 0.258 | -0.153 | 0.180 | 0.061 | 0.120

50 0.166 | 0.275 | -0.066 | 0.184 | 0.090 | 0.198

2.0 12.0 |- 100 0.180 | 0.243 | 0.009 | 0.136 | 0.135 | 0.184

200 0.176 | 0.216 | 0.087 [ 0.131 | 0.162 | 0.180

50 0.138 | 0267 | 0.142 | 0.230 | 0.176 | 0.246

2.5 8.0 100 0.127 | 0224 | 0211 0.247 | 0207 | 0.244

200 0.101 0.171 | 0.272 | 0.289 | 0.208 | 0.230

50 0.108 | 0272 | 0.261 | 0308 | 0.216 | 0.281

3.0 6.0 100 0.065 | 0.197 | 0330 | 0353 | 0.215 | 0.255

200 0.048 | 0.167 | 0354 | 0365 | 0.199 | 0.222

Beta model

50 0.002 | 0.249 | 0.049 | 0.140 | 0.018 | 0.175

1.5 1.0 100 -0.002 | 0.191 | 0.055 | 0.115 | 0.009 | 0.133

200 0.003 | 0.152 | 0.044 | 0.089 | 0.006 | 0.100

50 0.004 | 0.244 | 0.006 | 0.129 | -0.009 | 0.167

2.0 1.0 100 -0.016 | 0.186 | 0.014 | 0.100 | -0.010 | 0.123

200 | -0.007 | 0.139 | 0.004 | 0.077 | -0.003 | 0.103

50 -0.025 | 0.240 | -0.030 | 0.126 | -0.028 | 0.167

2.5 1.0 100 | -0.018 { 0.179 | -0.015 | 0.097 | -0.033 | 0.128

200 -0.026 | 0.142 | -0.016 | 0.081 { -0.011 | 0.106

50 -0.026 | 0.223 | -0.047 | 0.133 { -0.033 | 0.165

3.0 1.0 100 -0.019 | 0.178 | -0.033 | 0.105 | -0.036 | 0.137

200 -0.017 | 0.133 | -0.025 | 0.082 | -0.023 | 0.101
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Table 3.2. The Efficiency (EFF) for £,,(0), f5:(0) and £,,(0)

B |w | n EFF1 EFF2 EFF3
Exponential power model
50 1.514 1.428 1.788
1.0 5.0 100 1.769 1.607 1.993
200 2.034 1.834 2.223
50 0.745 1.165 1.066
1.5 3.0 100 0.790 1.210 1.032
200 0.867 1.024 1.138
50 0.567 0.618 0.706
2.0 2.5 100 0.579 0.529 0.654
200 0.578 0.419 0.648
50 0.500 0.431 0.632
2.5 2 100 0.522 0.373 0.626
200 0.520 0.328 0.591
Hazard rate model
50 1.472 1.191 1.854
1.5 20.0 100 1.412 1.334 2.530
200 1.115 1.568 2.358
50 0.919 1.360 1.298
2.0 12.0 100 0.827 1.533 1.098
200 0.701 1.215 0.833
50 0.553 0.684 0.646
2.5 8.0 100 0.495 0.449 0.463
200 0.432 0.265 0.335
50 0.481 0.383 0.459
3.0 6.0 100 0.464 0.267 0.369
200 0.446 0.201 0.342
Beta model
50 0.854 1.532 1.183
1.5 1.0 100 0.896 1.573 1.338
200 1.040 1.685 1.480
50 0.986 1.908 1.329
2.0 1.0 100 1.047 1,944 1.594
200 1.189 2.116 1.631
S0 0.987 1.788 1.455
2.5 1.0 100 1.212 2.121 1.633
200 1.276 2.201 1.783
50 1.037 1.774 1.509
3.0 1.0 100 1.226 2.103 1.600
200 1.388 2.292 1.901
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CHAPTER FOUR

NEW ESTIMATORS FOR {(0) WITH AND WITHOUT
THE SHOULDER CONDITION

4.1 Introduction

In the previous two chapters, the comparison (via simulation technique) of the

different estimators of f(0) suggested that the most promising estimators when the
model satisfies the shoulder condition were Barabesi's estimator, f 2 (0) (Eq. 2.15)

and the first proposed estimator f . (0) (Eq. 2.18). Also, the most promising estimator

when the model does not satisfy the shoulder condition were Eidous's estimator,

f” PE (O) (Eq. 3.4) and the second proposed estimator f” P2 (0) (Eq. 3.7). In this chapter
we suggest new estimators that combine between two good estimators. The
combination is based on one estimator that performs well when the shoulder condition
is valid and the other one is selected based on the criteria that it performs well when
the shoulder condition is violated. The new proposed estimators will compared with

the semi-parametric estimator that suggested and studied by Eidous and Al-

Shakhatreh {2011).

4.2 Semi-Parametric Estimator

Eidous and Alshakhatreh (2011) introduced a new estimator for f{0). Their
estimator can be considered as a generalization of the semi-parametric estimator of

Eidous (2009), which combines the kernel estimator with parametric detection

function. The parametric detection function is selected based on testing the shoulder
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condition assumption. They assumed that the parametric detection function is of the

form

glx,a,,a,)= exp(— (a1x2 + azx)),

which implies that g(0,a,,¢,)=1 and g'(0,a,,a,)=—a,. Eidous and Alshakhatreh

(2011) proposed the estimator _Zl.az (0) of f(0) given by

-k

AROREADRE zx( )[g(x.,a,,az)]. @)

To utilize Estimator (4.1) the shoulder condition needs to be tested, if the shoulder
condition is true (i.e. f '(0" )= 0) then g(x,a,,a,) is selected to be g(x,a,,0). In this
case, the detection function is the half-normal. Otherwise, if f '( +): 0 is rejected
then g(x,a,,az) is taken to be g(x,O,az). That is, the detection function is the

negative exponential, For simplicity, we used the notation Zjllﬂ (0) to represent the

estimator (4.1) when a, is fixed and a, =0. Also, we used the notation };'az (0) to

denote the estimator when a, is fixed and g, =0.

Eidous and Alshakhatreh used the likelihood ratio test of Zhang (2001) to decide

about the final form of their estimator (4.1) as the following;

Under H,: f '( * ) =0 (i.e. a, =0), the expected value of the estimator (4.1) is

| /(o)
£(7,0)- J+20-k)ah? %2

The form of an unbiased estimator for f(0) (under H,)is

50)=7, JON1+2(~K)a,? . (4.3)
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There is no sense to use (4.3) as an estimator of f (O) since it contains unknown

parameter ;. To overcome this deficiency, they replaced the parameter q, by its

maximum likelihood estimator (MLE); @, = n/ 22 X7 . So the estimator of £(0) is

i=1

72 0)= 7,0 ON1+20- K)a b, (4.4)
where fél o represent the estimator (4.1} when a, is being estimated from the data by
using the maximum likelihood method and a, is zero.

Eidous and Al-shakatreh (2011) studied the asymptotic properties of }:0' (0) as

n —co. Similarly, under H,: f '(O*)# 0 (ie. a, =0), the expected value of the

estimator (4.1) is

E(}" (o))— 2-20(a, k(1 -k))

o - _ 21201 _ 1\
exp{ a2h2(1 k)

]f(o), (4.5)

where f(0)=u#=a, and ®fx) is the distribution function of the stander normal
distribution. From (4.5) an unbiased estimator of f (0) (under H,)is

23172 _ 2

exp[ a’h 2(1 k) ]

3 foa, 0). (4.6)

h0)=—- 20(a,h(1— &

Again estimator (4.6) contains unknown parameter a,. Replacing a, by its MLE;

~

1 _ . .
a, = =, where X is the sample mean. Therefore, estimator (4.6) becomes,
2T% p

_Atp2f1 2
exp[ a2h 2(1 k) }

.71. (0) = )) .?:).éz (0) >

220G, 1 -k
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where }0 represent the estimator (4.1) when a, 1s being estimated from the data by
using the maximum likelihood method and a, is zero. To use £,(0) and £(0) in
practice, we need to determine the value of k. Eidous (2009) suggested to compute
the value of k by using k= f"(0)/g"(0,a,,a,) f(0). However, & still depends on
unknown quantities f*(0),2"(0,4,,a,) and f(0). Therefore and for simplicity, we
fixed the val-ule of k in this study to be Oand 1.

To choose the value of the bandwidth 4 for this estimator we used the m-nearest-
neighbor method which is given by &= x(,, where x,, represents the m” order
statistic in the observed sample. A common choice of m is given by m = ln‘], where
[] denotes the greatest integer function, # is the sample size and 0 <£ <1.In this
setting, we used £=4/5 (see for example, Mack and Rosenablatt, 1979, and

Barabesi, 2001).
4.3 The Proposed Estimators

Let X,,X,,...,X, be a random sample of perpendicular distances of size n with
unknown detection function and probability density function f (x) where x > 0. Then

we proposed the following estimator for f (0),

: f @ if feF,
0)=<"E , 4.7)
In0) {fPE(O) if feF,

where F, is given in (2.6), f' ~(0) is the Barabesi estimator and £, ¢ (0) is the Eidous

estimator (see chapters 2 and 3). The estimator f‘ +»(0) can be re-written as follows :
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To compute estimator f »3(0), we need first to perform the test
Hy:feF, vs. H,:feF\F,. (4.8)

This can be accomplished by using Mack (1998)'s technique, which is stated in

Section (2.3). Another proposed estimator for f(0) is

Fri0)=c £5(0)+ (1) £ (0), (4.9)

where the parameter & e [0,1] represents the weight of 75(0} in the final estimator
fm (0). In this study, we suggest to choose ¢ in Estimator (4.9) by using the
p-—value of the test of (4.8), since large p-—value supports the hypothesis
H,: feF, then fB(O) is more appropriate (has larger weight) than fPE(O) to
estimate f(0).

Based on the results of the previous two chapters, we also proposed the following two

esttmators, that take the same forms of estimators (4.7) and (4.9),

. Q) if feF,
0)=2<"" , 4.10
/rs©) {fm(o) if feF, *19

and

fps(o)zafp1(0)+(1*a)fpz(0)v (4.11)
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where f,,, (0) is the estimator given by (2.18) and f‘m (0) is given by (3.7). The

properties of these proposed estimators are studied via simulation in the next Section.
4.4 Comparison and Results

In this section, a simulation study is conducted to study the performances of the
proposed estimators, f’m(O), F+.(0), f.(0) and fPS(O). Also, Eidous and Al-
shakatreh (2011) estimator, _'}";Lﬂz (0) is considered and its results are given. The

efficiencies of these different estimators with respect to the classical kernel estimator
are compared.
Again we used the three families, which are given in Section (2.5) by equations

(2.21), (2.22) and (2.23) to generate the data. The quantities n, # and w were
selected in the same way as in Section (2.5) and 1000 samples each of size

n =50, 100, 200 are simulated from these families. The relative bias (RB), the

relative mean square error ( RME) and the efficiency ( EFF ) of each estimator are

computed. The efficiencies in Table (4.3) are calculated with respect to the classical

kernel estimator, f,(0) (Eq. 2.3). The abbreviations EFF1, EFF2, EFF3, EFF4, EFF5
and EFF6 in Table (4.3) are used to represent the efficiencies of };Laz (0) (with
k=0), };Laz (0) (with k£ =1), f P3 (O)a f P4 (0), f; Ps (0) and J? P6 (0) respectively.

Before we can apply the different estimators we need to perform a test about the

validity of the shoulder condition. The test in (4.8} is achieved at level of significance

0.05. Note that the two estimators f},(0) and Fog (0) do not need any specific value

for the level of significance, since the computing of their values depend on the

p —value.
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Depending on the simulation results given in Tables (4.1) and (4.2), we observed that

the RMEs of different estimators decrease as the sample size increases. This is a good
sign for the consistency of them. The estimator Z,,az (0) with k=1 gives a good
performance compared to f”;]_az (0) with k=0.

The examining of the proposed estimators results show that the performances of

1, ~5(0) and fps (0) are — in general — satisfactory. The other two estimators f,, (0)

and f, 7 (0) perform well for models that do not have the shoulder condition, When
comparing the proposed estimators, among themselves, it is difficult to determine the

best estimator. However, it appears from the results that f s (0) can be considered a
worthwhile. The estimator f s (0) utilizes the two estimators f Pl (0) and f”m (0)
ased on testing the shoulder condition assumption. It becomes f,,(0) when the
Ider condition is accepted and it is fPZ(O) when the shoulder condition is
r+izcted} A deep insight into the RMEs of 7, ,(0) in Table (2.1) and that of f,, (0) in
Table (3.1) hows that the RMEs of f‘ s (0) compromise between the RMEs of f‘ Pl (0)

and f,,(0), The same thing can be said about estimator f; 75(0), which used f,(0)

and f £ (0])-
The other two proposed estimators f5,(0) and 1, 7(0) perform better than £,,,(0) and

F»5(0) for the models that do not have the shoulder at the origin and the converse is
true when models satisfy the shoulder at the origin. This may be due to the fact that

even when the shoulder condition is true (accept H,), the p—value may be small

(less than 0.5). This indicates that the weight of frg (0) is less than the weight of
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7 +(0) in estimator 7, "+ (0). Also, for estimator f‘% (0) the weight of 7 ., (0) may be

less than the weight of f +,(0) even when the shoulder condition is valid. This may

illustrate the small values of the efficiencies that correspond to f’ s (0) and f e (0) for

the models EP with £ =2.0, 2.5 and HR with #=2.5, 3.0.
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Table 4.1. The Relative Bias (RB) and the Relative Mean Error (RME) for }’;haz (0)
with k=0, k=1, £,,(0) and f,,(0)

() ) 1r(0) 1n(0)
(£=0) (£=1)
g lw |n RB |RME | RB | RME | RB |[RME| RB | RME
Exponential power
model
50 |-0.289 10320 | -0.262 | 0.291 | -0.261 | 0.283 | -0.229 | 0.256
1.0 | 5.0 | 100 |-0.273 | 0292 | -0.252 | 0.269 | -0.225 | 0.243 | -0.186 | 0.208
200 |-0.251 | 0.262 | -0.229 | 0.240 | -0.194 | 0.211 [ -0.153 | 0.170
50 |[-0.175 ] 0.224 | -0.080 | 0.151 | -0.068 | 0.154 | -0.006 | 0.143
1.513.0]| 100 |-0.149 | 0.182 | -0.079 | 0.124 | -0.063 [ 0.126 | 0.010 | 0.113
200 [ -0.135 | 0.155 -0.076 | 0.106 | -0.052 | 0.105 | 0.023 | 0.099
50 |-0.109 [0.174 | -0.025 | 0.127 | 0.013 | 0.151 | 0.097 | 0.181
20|25 100 |-0.096 [0.139 | -0.010 [ 0.093 | 0.010 | 0.118 | 0.100 | 0.155
200 |-0.079 | 0.108 | -0.007 | 0.072 | 0.010 | 0.097 | 0.101 | 0.143
50 |-0.085 |0.156 | -0.090 | 0.155 | 0.059 | 0.175| 0.172 | 0.237
25120 100 |-0.068 |0.115 -0.071 | 0.116 | 0.044 | 0,138 | 0.160 | 0.208
200 | -0.049 10.088 [ -0.052 | 0.083 | 0.037 | 0.109 | 0.140 | 0.174
Hazard rate model
50 |-0.120 | 0.226 | -0.095 | 0.226 | -0.282 | 0.322 | -0.277 | 0.319
1.5 20 | 100 |-0.060 | 0.162 -0.064 | 0.161 | -0.229 | 0.256 | -0.228 | 0.256
200 [ -0.006 | 0.114 | -0.016 | 0.115 | -0.153 | 0.180 | -0.153 | 0.180
50 |-0.098 | 0.187 | -0.067 | 0.172 | -0.113 | 0.193 | -0.083 | 0.183
2012 | 100 {-0.060 | 0.133 -0.052 | 0.122 | -0.047 | 0.136 | -0.007 | 0.128
200 | -0.033 | 0,092 -0.030 | 0.091 | 0.015 | 0.117 | 0.065 | 0.117
50 [-0.068 J0.156 | -0.001 | 0.145 | -0.006 | 0.146 | 0.071 | 0.177
2518.0} 100 |-0.039 |0.114 0.003 | 0.105 | 0,011 {0.114 | 0.112 | 0.169
200 |-0.030 | 0.086 0.015 | 0.075 | 0.027 | 0.102 | 0.144 | 0.153
50 | -0.051 | 0.140 0.057 | 0.151 | 0.050 | 0.149 | 0.150 | 0.217
3.0 60| 100 | -0.030 | 0.104 0.051 | 0.115 | 0.054 | 0.126 | 0.181 | 0.205
200 | -0.019 | 0.073 0.048 | 0.084 | 0.056 | 0.115 | 0.197 | 0.194
Beta model
50 |-0.206 | 0.245 -0.092 | 0.145 | -0.089 | 0.163 | -0.024 | 0.137
1.5 1.0 100 |-0.180 | 0.206 -0.099 | 0.134 | -0.087 { 0.138 | -0.018 | 0.109
200 |-0.170 | 0.186 | -0.106 | 0.125 | -0.074 | 0.114 | -0.018 | 0.087
50 |-0.224 1 0.260 | -0.129 | 0.181 | -0.114 [ 0.175 | -0.058 | 0.143
20| 1.0] 100 |-0.209 |0.230 | -0.132 | 0.161 |-0.112 | 0.153 | -0.052 | 0.119
200 | -0.185 | 0.200 | -0.129 | 0.146 | -0.101 | 0.129 | -0.047 | 0.093
50 {-0.239 |0.271 -0.152 | 0.190 | -0.141 | 0.191 | -0.088 | 0.154
25|10 100 [-0.220 | 0.240 | -0.150 | 0.177 | -0.128 | 0.163 | -0.073 | 0.124
200 |-0.192 | 0.208 -0.148 | 0.164 | -0.124 | 0.149 | -0.069 | 0.109
50 |-0.242 | 0.276 -0.163 | 0.207 | -0.151 | 0.195 | -0.101 | 0.162
30| 1.0 | 100 |-0.230 | 0.249 | -0.172 | 0.193 | -0.139 | 0.173 | -0.084 | 0.132
200 |-0.200 [ 0.216 | -0.161 | 0.176 | -0.124 | 0.149 | -0.070 { 0.108
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Table 4.2. The Relative Biases (RB) and the relative Mean Error (RME) for f, +5(0)
and f P6 (0)

1»5(0) 1#0)

B | w | RB | RME | RB RME
Exponential power model
50 -0.247 | 0.294 | -0.168 0.232
1.0 5.0 100 -0.193 | 0.245 | -0.129 0.186
200 -0.171 0.207 | -0.105 0.143
50 -0.089 | 0.148 | -0.013 0.136
1.5 3.0 100 -0.060 | 0.132 | 0.011 0.142
200 -0.035 | 0.097 | 0.021 0.099
50 -0.001 0.126 0.065 0.163
2.0 2.5 100 -0.005 | 0.097 | 0.035 0.120
200 0.028 0.095 0.065 0.125
50 0.039 0.137 0.094 0.190
2.5 20 100 0.067 | 0.129 | 0.106 0.165
200 0.049 0.090 0.070 0.117

Hazard rate model

50 -0.095 | 0.216 | -0.072 0.192
1.5 20.0 100 -0.008 | 0.144 | -0.004 0.140
200 0.065 | 0.120 | 0.065 0.120
50 -0.008 | 0.220 | 0.075 0.200
2.0 12.0 100 0.030 | 0.183 | 0.104 0.172
200 0.08¢ | 0.193 | 0.153 0.192
50 -0.023 | 0.186 | 0.103 0.213
2.5 8.0 100 0.012 | 0.142 | 0.124 0.189
200 0.042 | 0.108 | 0.128 0.168
50 0.037 | 0.152 | 0.131 0.219
3.0 6.0 100 0.069 | 0.131 | 0.141 0.192
200 0.096 | 0.122 | 0.143 0.170

Beta model

50 -0.104 | 0.178 | -0.041 0.176
1.5 1.0 100 -0.090 | 0.138 | -0.045 0.126
200 -0.075 | 0.117 | -0.033 0.107
50 -0.126 | 0.187 | -0.061 0.174
2.0 1.0 100 -0.113 | 0.151 | -0.056 0.130
200 -0.094 | 0.130 | -0.046 0.110
50 -0.157 | 0.211 | -0.088 0.182
2.5 1.0 100 -0.131 | 0.173 | -0.070 0.144
200 -0.105 | 0.146 | -0.054 0.119
50 -0.159 | 0.210 | -0.083 0.176
30 1.0 100 -0.138 | 0.179 | -0.075 0.142
200 -0.115 | 0.153 | -0.062 0.118
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Table 4.3. The Efficiency (EFF) for f, , (0) with k=0, k=1, £,,(0), £,,(0),

f 25(0) and fP6 (0) with respect to fk (0)

Jii w n EFF1 | EFF2 | EFF3 | EFF4 | EFF5 | EFF6
Exponential power model
50 1.020 { 1.162 | 1.202 ; 1318 | 1.155 | 1.467
1.0 5.0 100 1.014 1.134 1.223 1.438 1.214 1.599
200 1.036 1.112 1.285 1.602 1.308 1.896
50 0.882 1.282 1.260 1.377 1.250 1.368
1.5 3.0 100 0.878 1.267 1.270 1.433 1.210 1.122
200 0.837 1.235 1.232 1.366 1.273 1.250
50 0.867 1.238 1.032 | 0.859 1.142 0.878
2.0 2.5 100 0.853 1.282 1.016 0.783 1.309 1.058
200 0.893 1.394 1.024 0.713 1.073 0.814
50 1.005 0.970 | 0.881 0.624 1.094 | 0.787
2.5 2 100 1.057 1.013 0.838 0.565 0.845 0.658
200 1.037 1.051 0.845 0.538 0.957 0.741
Hazard rate model
50 1.699 1.714 1.178 1.189 1.808 2.030
1.5 20.0 100 2.161 2.115 1,343 1.347 2.349 2.422
200 2.468 2.358 1.582 1.584 2.332 2.332
50 1.358 1.423 1.333 1.400 1.137 1.258
2.0 12.0 100 1.467 1.580 1.517 1.603 1.108 1.178
200 1.607 1.708 1.277 1.237 | 0.765 0.769
50 1.025 1.116 1.090 0.907 0.884 0.769
2.5 8.0 100 0.973 | 1.145 1.012 0.677 0.794 0.596
200 0.942 1.028 0.830 | 0.431 0.722 | 0.645
50 0.919 0.919 0.858 0.572 0.899 0.626
3.0 6.0 100 0932 | 0.854 | 0.739 | 0402 0.787 | 0.535
200 0.993 0.862 0.618 0.324 0.583 0.420
Beta model
50 0.854 1.452 1.286 1.569 1.189 1.204
1.5 1.0 100 0.837 1.327 1.297 1.660 1.302 1.432
200 0.817 1.247 1.301 1.740 1.318 1.440
50 0.867 1.311 1.280 1.660 1.192 1.280
2.0 1.0 100 0.854 1.231 1.293 1.691 1.283 1.492
200 0.841 1.160 1.295 1.771 1.310 1.554
50 0.883 1.259 1.275 1.563 1.164 1.346
2.5 1.0 100 0.871 1.191 1.293 1.711 1.224 1.470
200 0.865 1.129 1.277 1.753 1.266 1.556
50 0.898 1.224 1.259 1.513 1.167 1.393
3.0 1.0 100 0.889 1.158 1.275 1.654 1.216 1.524
200 0.882 1.103 1.271 1.753 1.257 1.627
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CHAPTER FIVE

REAL DATA ANALYSIS AND CONCLUSIONS

5.1. Introduction

In this chapter we applied the different estimators of this thesis on a set of real data,
called "wooden stakes data". Final conclusions and comments are also given in this

chapter.
5.2 Wooden Stakes Data

The wooden stakes data are given in Burnham et. al. (1980, p:61 ) and re-stated here
in Table (5.1). They deal 150 wooden stakes randomly in determined size area with
long equal to 1000 meters, then they used a line transect method to estimate the
abundance of these stakes in this area, the number of detected stakes was 68, and the
perpendicular distance from detected stakes to the transect line was recorded to form

the wooden stakes data which are given in Table (5.1), the form of the distribution
function for these data is unknown, but the true value of f(0) is 0.110294 . The true

value of D was 0.00375 stakes/m”, which can be calculated by using the

fundamental relation D = nf{0)/2L . Also, the true value of the number of stakes was

N =150, which gives the area of study to be 4 = 40000m* by using the relationship

D=N/A.
The different estimators of this thesis are used to estimate f(0), D and N of the
stakes data. The approximate standard error of each estimator of f(0) is also

computed by using the bootstrap method. The bootstrap method is a technique used to
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generate several random samples based on the original observed data. If we have a
sample of size n, we generate 2 new random sample with the same size by drawing
observations with replacement, then we compute the estimators based on the bootstrap
sample and repeat this steps B times as the following:

Let X, X,,...,X, be the original random sample with probability density function

I (x) and let f' (0) be an estimator of f (0), then a bootstrap sample is one of size »,
drawn with replacement from the original random sample. Denote the ith bootstrap

sample by X[, X{",..., X" and let B be the number of bootstrap samples (B is
taken to be 1000 throughout this study). Let £"(0) be the estimator of f (0) based on

XP,x0,..,XP, i=1,2,..., B, then the approximate standard error of f(O) is

. [Sro)
a7 )= |55 2.770)-5 Hp—

By examining these data, we observe that the perpendicular distance x, =31.31

seems to be an outlier, which can be eliminated before we are going to analysis the
data (see Burnham et. al. 1980). However, Table (5.2) gives the point estimate of
f(0), D and N together with the approximate standard error of the estimator of

/(0) when x is included (n = 68) and Table (5.3) gives the same result when x; is

excluded (n = 67).
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Table 5.1. The perpendicular distances of wooden stakes data (Bumham et. al.

1980)
i X, i X, i X, i X;
1] 202 | 1] 161 | 25| 379 | 55| 849
2| 045 | 19| 408 | 35| 1524 | s3] 6.08
3| 104 | 20| 65 | 37| 347 | s4| 04
4| 361 | 21| 827 | 3g| 305 | g5| 933
5| 092 | 55| 485 | 39| 793 | 5| 0.53
6| 10 | 23| 147 | a0| 1815 | 57| 1.23
71 34 | 24| 186 | 41| 105 | s5| 1.67
8| 29 | 25| 041 | 25| 441 | s9| 453
o| 816 | 26| 04 | 43| 127 | 0| 3.12
10| 647 | 27| 02 | 44| 1372 | g1] 3.05
11| 566 | 28| 1159 | 45| 625 | g2| 66
12| 295 | 20| 317 | 45| 359 | 63| 44
13| 396 | s0| 71 | a7| 904 | ga| 497
12| 009 | 311 1071 | 45| 768 | g5/ 3.17
15| 1182 | 33| 386 | a9| 489 | gg| 7.67
16| 1423 | 33| 605 | 59| 91 | g7| 18.16
17| 244 | 34| 642 | 51| 325 | ga| 3131
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Table 5.2. The point estimates of f (0), D, N and the standard error (SE) of the
cstimators of f(0) for wooden stakes data (1 = 68).

estimator j‘r(o) D N SE(f' (0))
fu(0) | 010125 |3443x107 | 137.72 0.012
f,(0) | 010909 |3709x107 | 14836 0.013
7.(0) | 010027 [3400x10° | 13636 | 0.014

Fue(0) | 011814 |4017x107 | 160.68 0.025
Fop(0) | 013240 | 4502x107 | 180.08 0.013
foa(0) | 01079 |3671x10* | 146.84 0.021
Fn(0) | 010834 [3684x107 | 147.36 0.012
Fop(0) | 012571 {4274x107 | 170.96 0.017
Fo(0) | 010909 | 3.709x107 | 14836 0.015
Fo(0) | 012625 [4293x10° | 17172 | 0.014
fus(0) | 0.10834 | 3684x107 | 147.36 0.012
Fr(0) | 012720 | 4261x107 | 170.44 0.015
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Table 5.3. The point estimates of f° (0), D, N and the standard error (SE) of the
estimators of f (0) for wooden stakes data (n = 67 ).

estimator f’(O) D X g E(f (0))
£(0) | 010432 |3495x107 | 139.80 0.013
f,(0) | 011245 |3767x107 | 150.68 0.014
f:(0) | 011076 |3710x107 | 148.40 0.015

7.0 | 011921 [3.994x107 | 159.76 0.029
f{0) | 013521 |4530x107 | 181.20 0.015
7..(0) | 011285 [3771x10” | 15084 | 0.026
Fa(0) | 011254 |3770x107 | 150.80 0.012
F(0) | 012112 | 4118x107 | 164.72 0.017
7.,(0) | 011245 [3767x107 | 15068 | 0.014
fea(0) | 012803 |4289x107 | 171.56 0.014
Fos(0) | 011254 [3.770x107 | 150.80 0.012
Fo(0) | 012258 |4106x107 | 16424 0.014
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Testing the shoulder condition of these data (level of significance = 0.05) indicates
that the shoulder condition is valid (i.e f '( * )= 0 is accepted). In this case, we want
to point out that f,,(0)= 7,(0) and f,»,(0)= f,,(0). Based on Tables (5.2) and (5.3)
and by excluding the two estimators f,,(0) and £, ,(0), we observe that the

standard error of the other estimators are close to each other when n = 68 and when

n=67. As we pointed out in Chapter (3), despite that Mack's estimator f’ ME (0) has

small bias —in general- it suffers from the problem of un-stability in its performance.
This problem is also clear for this real data since it has the largest standard error
among the other estimators. By considering the standard error of different estimators

and how thesc estimators are close to the true values f{0), D and N, the results
show that the two estimators f, (0) and Fr (0) perform the best among the other
estimators. They exhibit very similar results for both cases n=68 and n=67. We

also note that the estimators £, ), 7 -(0) and Fro (0) -which are developed under

the constraint f'(0") s 0- give overestimate for the true values.

5.3 Concluding Remarks and Comments

In view of findings on the simulated and real example in this thesis, we conclude the

following:
e The proposed estimator f,,(0) performs well as a general estimator. Despite
that this estimator is developed under the constraints f '( +)= 0, it performs

well even for models with f'(0*)=0. Also, the results of Barabesi's

estimator f,(0) are acceptable in general,

61



© Arabic Digital Library - Yarmouk University

If the set of data seem to be spike at the origin, the proposed estimator f o (0)
is a very competitor for the other existing estimators and can be recommended
in this case.

The idea of combining between some estimators based on testing the shoulder
condition assumption seems to be success in some cases but not in all cases.
Among these combining estimatbrs, the estimators f, +5(0) and f,,(0) perform
well in general. However, the semi-parametric estimator of Eidous and Al-
shakatreh beats them in some cases.

It is not easy job to recommend a specific estimator —from those considered in
this thesis- as a best estimator for all cases. However, we can close our
comments and conclusions by saying that:

The classical kemel estimator f,(0) is recommended when the model of data

has a large shoulder at the origin provided that it does not decrease sharply

away the origin (e.g. EP model with # = 2.5 and HR model with #=3.0).
The Barabesi's estimator f, (0} and the proposed estimator £, -, (0) are
recommended for data models with moderate shoulder condition at the origin
(e.g. EP model with £ =1.5 and HR model with #=2.0)

Eidous's estimator fPE(O) and the proposed estimator fpz (0) are

recommended for data models that do not have a shoulder condition at the

origin (e.g. EP model with £ =1.0 and BE model with different values of £).

Or even for data models that have a shoulder but decreases markedly away the

origin (e.g. HR model with f=1.5). In these two cases, the proposed

estimators f,(0), f54(0), f»s(0) and f,,(0) are also perform well.
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Finally, the real data example shows that f"ﬂ (0), fB(O), f E(O), f'm (0) and ff 5 (0)

are all perform well for these real data.
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